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Abstract

We propose to use the physically-based mechanical threshold stress (MTS) model for the analysis of adiabatic shear
band spacing in HY-100 steel and Ti-6Al1-4V alloy. Based on existing works, we use the perturbation method to
determine the instability modes and their corresponding spacing. To validate our results, we compare them to those
obtained using the phenomenological, and widely used, Johnson—Cook and power law models. We notice that the shear
band spacing depends on the constitutive relation employed. We also compared the results from our analytical analysis
to the available experimental ones. We show, for the first time, that the MTS model yields good results for adiabatic
shear band spacing, particularly for the case of Ti-6Al-4V alloy.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The localization of plastic deformation in narrow bands (shear bands) is a major damage mechanism
that occurs in ductile materials during high strain-rate deformation. They are observed in various appli-
cations such as metal forming, ballistic impact and high speed machining. Their formation signals a
transition from a generally homogeneous deformation to a non-homogeneous one involving high strain
gradients in a narrow region. In some circumstances many small bands may form throughout a volume of
material (Nesterenko et al., 1995), in which case a general weakening occurs with the possibility of multiple
failures and a general fragmentation. In other circumstances one band may dominate and material failure is
restricted to just that one location. In the experiments of Marchand and Duffy (1988), thin-walled tubes
were twisted at nominal strain rates in the range of 1200-1600 s~!. Only one shear band is observed in their
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specimen. However, during the radial collapse of thick-walled cylinder deformed at a strain rate of 10% s,
Nesterenko et al. (1995) observed 20 shear bands spaced about 0.85 and 1 mm in titanium and austenitic
stainless steel, respectively.

Few numerical studies of the shear band spacing are available in the literature. Grady and Kipp (1987)
have obtained the shear band spacing by accounting for momentum diffusion due to unloading within
bands. Wright and Ockendon (1996) used a perturbation analysis to characterize a dominant mode, which
corresponds to the most probable minimum spacing of shear bands. The analysis of Wright and Ockendon
(1996) is restricted to the perfectly plastic materials. Linear perturbation analysis, which has been used in
fluid mechanics, is first introduced in the context of adiabatic shear banding by Clifton (1978) and used
later by Bai (1982), Molinari (1985), Shawki and Clifton (1989) among others (e.g. see Bai and Dodd,
1992). Wright and Ockendon (1996) postulated that, in an infinite body, perturbations growing at different
sites will never merge and result in multiple shear bands. Thus, the wavelength of the dominant instability
mode with the maximum growth rate will determine the shear band spacing. Molinari (1997) has extended
Wright and Ockendon (1996) work to strain-hardening materials and has estimated the error in the shear
band spacing due to the finite thickness of the block deformed in simple shear. Recently, Batra and Chen
(2001) showed that four viscoplastic relations (Wright-Batra, Johnson—-Cook, power law, and Bodner—
Partom relation) gave quite different values for the shear band spacing and the bandwidth.

In this paper we adopted the multi-term mechanical threshold stress (MTS) model, which includes the
superposition of different thermal activation barriers for dislocation motion, for adiabatic shear band
spacing analysis. In this model, evaluation of work hardening associated with dislocation accumulation and
recovery is principally based on the Voce law. To the best of our knowledge the MTS model has not been
used in the literature for shear band spacing analysis. The MTS model is based on the dislocation concepts
(Follansbee and Kocks, 1988) and was originally developed by Mecking and Kocks (1981). This model
provides a better understanding of the plastic behavior under a wide range of strain rate. The system of
governing equations for one-dimensional simple shearing deformation is formulated. For a given value of
the strain, a perturbation of the fundamental solution is considered and the instability modes are deter-
mined. We used the postulate of Wright and Ockendon (1996) to determine the shear band spacing. To
study the influence of the constitutive model on the results of the adiabatic shear band spacing, we compare
the results from the Johnson and Cook (1983) and power law models to the results of the MTS model. We
note that the shear band analysis using Johnson—-Cook and power law are available in the literature (Batra
and Chen, 2001; Molinari and Clifton, 1983; Klopp et al., 1985; Lee and Lin, 1998). The considered
materials in this study are HY-100 steel and Ti-6Al-4V alloy. The capability of the MTS model to predict
the shear band spacing is proven by comparison of our results to the experimental ones (Xue et al., 2002).

2. Governing equations

We consider the simple shear problem which models the torsional loading of a thin-walled tube. We use
a plate with a finite thickness 2h in the y direction whereas it is infinite in the shear direction x and in the
out-of-plane direction z (see Fig. 1). We assume that the displacement is equal to zero in the y direction and
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Fig. 1. Geometry used for shear analysis.
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that all quantities are uniform along the x and z directions. Thus, the deformation field depends only on the
space coordinate y. At the upper and lower surfaces, we apply a constant velocity parallel to the x direction.
The material is taken incompressible and its mass density is given by p. At large strain and high strain rate,
the elastic effects can be ignored and adiabatic conditions can be assumed at the boundaries. Therefore, the
governing equations are given by

e The momentum balance equation

ov Ot
2 1)
ot Oy
where v is the component of the velocity along the x direction (others component are equal to zero), ¢ is
time and 7 is the shear stress.

e The energy equation

or T .

where 7 and j are respectively the temperature and the shear strain rate. ¢ is the heat capacity, & is the
heat conductivity and f is the Taylor—Quinney coefficient which describes the fraction of plastic work
converted into heat.

e The compatibility equation

ov

-5 G)

7

In order to complete the problem description we need to introduce a material constitutive relation
expressed by the following general form:

t=1(y,7T,9) (4)
where ¢ is an internal variable whose evolution is given by

d
=i ©)

The form of the function f will vary with the specific constitutive relation.
The initial conditions are given by
v(y,0)=0, T(»,0)=T17, (»0)=0, ¢(,0) =0 (6)

where T; is the initial temperature.
The boundary conditions considered here are:
e A constant velocity V parallel to the shear direction is applied at the boundaries

v(=h,t) ==V, vht)=+V fort=0 (7)
¢ As high strain rates are considered in this study, adiabatic conditions are assumed at the boundaries:

or or
ay( h,t) =0 and % (+h,t) =0 fort=0 (8)
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3. Viscoplastic constitutive relations

It is well documented that the existence of a maximum on the stress—strain curve is a necessary condition
for the occurrence of adiabatic shear band. This maximum is due to the competition between the stabilizing
effect of the hardening and the strain rate and the destabilizing effect of the thermal softening. Therefore, we
must use a viscoplastic relation which takes these three effects into account. In this study we will use the
MTS model for the shear band spacing analysis. To highlight the efficiency of this model we also used two
other constitutive relations Johnson—Cook (Johnson and Cook, 1983) and power law (Batra and Chen,
2001; Molinari and Clifton, 1983; Klopp et al., 1985) models and compared results from these models to the
available experimental results.

3.1. The mechanical threshold stress model

The MTS model have initially been proposed by Kocks (1976), and then developed by Mecking and
Kocks (1981), Estrin and Mecking (1984) and Follansbee and Kocks (1988). According to this model, the
mechanical behavior of a material is only linked to the evolution of its microstructure. Thus, the kinetics of
the plastic flow during loading is controlled by a unique structural parameter, S, which takes dislocation
motion into account through an internal state variable, called MTS and denoted 7. This variable is defined
as the flow stress at 0 K. We also note that the relation between the flow shear stress, denoted 7, and the
MTS depends on the material considered. In the following, we present the MTS model in the case of the
HY-100 steel and Ti-6Al-4V alloy.

3.1.1. HY-100 steel

For the HY-100 steel, the MTS is given by the following equation (Goto et al., 2000):

T=T,+%+1, 9)
where 7, = 1, characterizes the rate-independent interactions of dislocations with long-range barriers, e.g.
grain boundaries, 7; characterizes the rate-dependent interactions of dislocations with short-range barriers
due to solute and interstitial atoms and 7, characterizes the rate-dependent interactions of dislocations with
long-range barriers consisting of other dislocations and carbide particles. We note that 7, increases during
deformation by increasing dislocation density, which depends on temperature and strain rate because
dynamic recovery takes place.

At different temperatures T’ and shear strain rates j, the contributions to the flow shear stress t; are
related to their reference counterparts 7; through the scaling functions S;(}, T) so that t; = S;(y, T)1;, where
j =1 or ¢. Hence, the flow shear stress 7 is described as follows:

T:Ta+Si(7>> T)%i,u'*'Ss(:Vv T)%e:u (10)
where g is the normalized shear modulus for which the dependence on temperature is given by the following
empirical relation (Varshni, 1970; Chen and Gray, 1996; Oussouaddi et al., 2003):

S D

ﬂ = — = _—_

Ho Ho €XP (% - 1)

Here 7Ty and D are empirical constants, u is the shear modulus at 7 and y; is the shear modulus at 0 K.
The scaling factor, S;(j, T), is derived from an Arrhenius expression relating strain rate to activation
energy and temperature

AG \"\"
=7 .exp<——’>, where AG; = go;ub® [ 1 — | <2 (12)
0j kT J )j T_j

(11)
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Table 1
MTS parameters for HY-100 steel (Bai and Dodd, 1992)

Parameter Value

7, [MPa] 23.55

7; [MPa] 779.65

U, [GPa] 71.46

D [MPa] 2910

Ty [K] 204

k [J/K] 1.38E-23

b [m] 2.48E-10

i [s7] 1E+13

oi 1.161

qi 1.5

Pi 0.5

7o [s7'] 1E+7

8oe 1.6

q.’: 1

Pe 2/3

8oes 0.112

A)')Ot;s [Sil] 1E+7

where j; is a reference shear strain rate, & is the Boltzmann constant, g, is a normalized activation energy,
b is the Burgers vector and p; and ¢q; are statistical constants that characterize the shape of the obstacle
profile (0< p; <1, 1 <g;<2, Mecking and Kocks, 1981). The scaling factor S;(j, T) can be derived from
Eq. (12)

()]
Si(h T)=q1- lm In <%)] (13)
J

Plastic strain is implicitly represented through the term representing structure evolution 7,. The specific
form for the expression of the plastic strain, y, is dependent on the strain-hardening rate description. Voce
law gives the strain-hardening response within the MTS model

du_, tanh(2%)

0 dy ~ tanh(2) (14)

where 7, is a temperature-and-rate-sensitive saturation shear stress, and 0, is an experimentally determined
stage II strain-hardening rate. The dependence of 0y on temperature is determined by Goto et al. (2000),
0y = 5102.4 — 2.0758 x T [MPa]. The saturation stress 7, is derived from the saturation threshold stress 7.

by
'5)5;50 _ _g0£sﬂb3 %ss
ln< ; ) i In <%sso> (15)

where go., is normalized activation energy for dislocation—dislocation interactions.
The values of the material constants of the above-described model are listed in Table 1.

3.1.2. Ti-6A1-4V alloy
In the case of the Ti-6A1-4V alloy the flow stress is expressed by the following equation (Da Silva and
Ramesh, 1997; Follansbee and Gray, 1989):
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Table 2
MTS parameters for Ti-6Al-4V alloy (Molinari and Clifton, 1983)
Parameter Value
7, [MPa] 58
%; [MPa] 872
goi 0.264
qi 2
pi 1
Poi [s71 1E+10
8os 0.8
7, [MPa] 486.6
os [7'] 1E+10
u [GPa] 49.02
s 2
Ds 1
8oe 1.6
0, 15711 IE+7
qlf 1
D: 2/3
s [MPa] 310.62
b [m] 2.55E-10
0y [MPa] 2721
Table 3
Physical parameters for HY-100 steel and Ti-6Al-4V alloy
p [kg/m?] ¢ [J/kgK] k [WmK] B
HY-100 7860 473 49.73 0.9
Ti-6Al-4V 4430 564 16 0.9

T=T, + Si().}v T)%l + Ss(% T)%b + Sﬂ(?v T)%r

(16)

where 7, is an athermal component and 7;, 7; and 7, are respectively threshold stress due to interactions of
dislocations due to interstitial atoms, to solute and to others dislocations. The specific form for the plastic
strain, y, depends on the hardening rate 0 = d7./dy given by the following empirical equation (Da Silva and
Ramesh, 1997; Follansbee and Gray, 1989):

dz, 7,
0=—"=0,[1--2 17
= ( ) (17)

where 7, is the value of the saturation threshold stress, and 6, is the hardening rate corresponding to the
stage II and is experimentally determined (Da Silva and Ramesh, 1997). The values of the material con-
stants of the above-described model for the Ti-6A1-4V alloy are listed in Table 2.

The physical parameters for both materials are given in Table 3.

3.2. Johnson—Cook model

Johnson and Cook (1983) proposed a phenomenological model for metals subjected to large strains, high
strain rates and high temperatures. The Johnson—Cook model has enjoyed much success because of its
simplicity and the availability of parameters of various materials of interest. The flow shear stress is given by
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Table 4
Johnson—-Cook parameters for HY-100 steel and Ti-6A1-4V alloy (Clifton, 1978; Klopp et al., 1985)
41 [MPa] /2 [MPa] 43 4 s 7o [s7'] T [K]
HY-100 182.25 580.36 0.107 0.0227 0.7 3300 300
Ti-6Al-4V 418.4 394.4 0.47 0.035 1.0 1E-5 300
Table 5
Power law parameters for HY-100 steel (Clifton, 1978)
v [MPa] o o 5] T [K] ns m v
HY-100 405 0.012 3300 300 0.107 0.0117 0.75

(9,7, T) = (4 + /12“/23) <1 + J4ln (%)) (1 _ (7];;__];?0> 5) "

where y is the plastic shear strain, j, is a reference shear strain rate. 7y and T;, are respectively the initial or
the reference temperature and the melting temperature. The coefficients 4y, 4,, 45, A4 and A5 are constitutive
parameters. In the right hand side of Eq. (18), the first term gives the stress as a function of strain-hardening
coefficient 4, and strain-hardening exponent /3, the second term represents instantaneous strain-rate sen-
sitivity and the last term represents the temperature dependence of the flow stress. Here, /4 is the strain-rate
parameter and Zs is the thermal-softening parameter.

For this model there is no internal variable. Therefore Eq. (5) reduces to ¢ = f = 0. The Johnson—-Cook
model parameters for the HY-100 steel and Ti—6A1-4V alloy are given in Table 4.

3.3. Power law

In order to analyze the influence of each material parameter on the shear band spacing it is useful to use
a constitutive relation with a simple form and decoupled terms for defining the strain hardening, strain-rate
hardening and thermal softening behaviors of the material. Therefore, we used in this study the power law
as reference behavior. Different authors (Molinari, 1985; Batra and Chen, 2001; Molinari and Clifton, 1983;
Klopp et al., 1985) have described the stress—strain curves for dynamic loading by

r(w,T)=ro(%>n<%>m(%>v (19)

where 1 is the yield stress of the material in a quasi-static simple shear test, n and m characterize the strain
and strain-rate hardening of the material and v < 0 characterizes its thermal softening. y, is the strain at yield
in a quasi-static simple shear test at ) = 10~* s~! and j, is a reference shear rate. T is a reference temperature
and T is the current temperature. For the HY-100 steel the parameters data are given in Table 5.

4. Perturbation analysis

Linear perturbation methods were first introduced in the context of adiabatic shear banding by Clifton
(1978). Here, we closely follow the work of Molinari (1997) in studying the stability of the homogeneous
solution of the governing equations (1)—(5).
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We consider the homogeneous solutions 7% (¢), v'% (¢), 9 (¢), T () for shear stress, velocity, shear strain
and temperature respectively. Now we consider an infinitesimal perturbation of the homogeneous solution
at time ¢ = ¢, expressed by

ds(, 1, 1) = 3Vl r > (20)

where 35 = (8v*, 8y 37 3T) and y represents the position along the thickness of the plate. The
quantities $v*, 5y, 7% and 8T(® characterize the amplitude at time ¢, of the perturbation. The parameter
¢ is the wave number of the perturbation and 7 is the inverse of the characteristic time, called growth rate of
the perturbation. The fundamental solution is stable when the real part of 5 is negative, Re(y) < 0, and
unstable when Re(#) > 0.

The perturbed solution is defined by the following equation:

s, t,t0) = (y, 1) + 8s(v, 1, to) (21)

Here, s = (v,y,7,T). By substituting the solution (Eq. (21)) into the governing equations (1)—(5) and lin-
earizing provide, at time #,, a linear set of equations for the amplitude &s°

Alto,n,¢)- 88" =0 (22)

This set of equation admits a non-trivial solution only if the determinant of the matrix A is equal to zero.
This leads to a cubic equation for the growth rate  of the perturbation

ot ot ot ot ot ot
2.3 g2 VT kE2 g0 28 2 i o YT ot o YT 2
p-cn +p<cc R SO+ & — By ar |, no+ |k % 3‘0+pc S/ o610 Tl + pr 3T |, &
ot ot
+k( =] += >f4=0 23
(fad)xo L (23)

In Eq. (23), partial derivatives are evaluated for the fundamental solution at time #,. For given values of
7° =1°%(%) and ¢&, three complex roots are obtained, #;(£,7°) (i = 1, 2, 3). The root with the largest positive
real part governs the instability of the homogeneous solution, and is hereafter referred to as the dominant
instability mode, denoted 1.

The fundamental solution is such that the strain rate is uniform, 7° = £. We note that in the case of
power law, the heat equation (2) can be resolved analytically, with adiabatic assumption and where the
constitutive law (13) is used to express the stress 7. In the case of the Johnson—Cook model the temperature
is obtained by numerical integration of the heat equation (2) where the constitutive law (7) is used to
express the stress 7. In the case of the MTS model the temperature is obtained by numerical integration of
the heat equation (2) and the evolution equation of the internal variable (5). Then Eq. (4) is used to obtain
the stress 7.

5. Results and discussions

First, we study the influence of the constitutive relations (MTS, Johnson—Cook, power law) on the shear
band spacing in the case of HY-100 steel and Ti-6Al1-4V alloy. Then we compare our theoretical predic-
tions with the experimental results of Xue et al. (2002) for Ti-6Al-4V alloy. At last, we also study the
influence of the nominal shear strain rate and of some material parameters on the shear band spacing.
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5.1. Influence of the constitutive relation on the shear band spacing

5.1.1. Case of HY-100 steel

For the HY-100 steel modeled by three different constitutive relations (MTS, Johnson—-Cook, power
law), Fig. 2a—c shows the dominant growth rate, np, vs. the wave number, ¢, for various values of the
average strain 7°. These curves have been computed for a nominal strain rate }° = 10* s~! and an initial
temperature 7, = 300 K. The dominant growth rate, i, depends on the initial time ¢, through the relation
7" = 3%,. For each value of 7°, the dominant growth rate increases for small values of the wave number
until it reaches a maximum then decreases for large value of &. The existence of this maximum is char-
acteristic of the dominant instability mode resulting from the competition of two stabilizing effects: inertia
restrains the growth of long-wavelength modes (small ¢) while heat conduction restrains the growth of
small-wavelength modes (large ¢). In what follows the maximum dominant growth rate at time #, for the
perturbation is called the critical growth rate 7., and the corresponding wave number is defined as the
critical wave number &.. A parametric study shows that the minimum value of the average strain required to

100 T T T L 120"'"x""x""x""x""x""x""A
r (@) MTSmodel - [ (b)powerlaw:
0 - ] 100' :
80f ]

60 + i r J
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I —%=05 ]

——y0=07 ]
(\\HH«/O:O.‘) -
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Fig. 2. (a) Dominant growth rate, #p, vs. the wave number, in the case of the HY-100 steel and for the MTS model (3° = 10* s7!,
T; = 300 K). (b) Dominant growth rate, 7, vs. the wave number, in the case of the HY-100 steel and for the power law (° = 10* s,
T; = 300 K). (c) Dominant growth rate, np, vs. the wave number, in the case of the HY-100 steel and for the Johnson—Cook model
(3° = 10* s71, T; = 300 K).
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obtain dominant growth rate instability is 0.32 for the power law model, 0.30 for the Johnson—-Cook model
and 0.448 for the MTS model, that is why we propose in Fig. 2 results for y° > 0.5.

Fig. 3a—c shows the dependence of the critical growth rate 5, and its corresponding wavelength
L. =2n/&. on the average strain 7° for HY-100 steel. For both the power law and the MTS model, we
observe that the curves of the critical growth rate and the critical wavelength vs. average strain have
respectively a maximum 7, and a minimum L. These values are obtained for two different values of the
average strain, 7Y, 7

Mo = max1e(7°) = 1) (24)
Lew = min Le(y") = Le(73) (25)
W=0

In the example considered here, since the values of 7§ and y) are very close for both the MTS and power law
(Fig. 3a and b), we assume 79 = 79, which are equal to 1.05 and 1.1 respectively, for the power law and MTS

100 "''I'"'I""I""I""I""_2'5 120-""I""|""|""|""|""|""2
5 i (@ MTSmodel ] . [ (b) power law A o
E ol 1, 2 ¢ 100} 1 2
S 80 - 2 = S L =
S 0 1 8 2 ¢ {158
g ol = = 80f 5
% 60 F 15 g o oy
_ L - [0} § 8
ES] ] @ £ 60 11 g
% i 1 2 = I 1 =y
5 40 - 1 5 3 I S 1 -
o] i ] [ o 40' --------------- : o'_
S I 1.% B [ 10573
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0 -....|....|....|....|....|....'0 0-....l....l....l....l....|....|....-0
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Fig. 3. (a) Influence of 7° on 5, and L. for the HY-100 steel and the MTS model (7° = 10* s7!, T; = 300 K). (b) Influence of 7° on 7, and
L. for the HY-100 steel and the power law (° = 10* s™!, 7; = 300 K). (c) Influence of y° on 7, and L. for the HY-100 steel and the
Johnson-Cook model (3° = 10* s}, 7; = 300 K).
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models. This assumption is in a good agreement with the results obtained by Molinari (1997) in the case of
XC18 steel with the power law model.

However, in the case of the Johnson—Cook model, the critical growth rate 7, exhibits a maximum for
79 = 2.875, but the critical wavelength L. has no minimum value.

It the case of non-hardening materials, Wright and Ockendon (1996) postulated that the dominant
instability mode with the maximum growth rate at time #, determines the shear band spacing, L

2n
Li=—+ 26
£ 26)

where £ corresponds to the time at 7} . For strain-hardening materials, Molinari (1997) defined precisely
the concept of critical time and corresponding strain (¢, y) and postulated that the shear banding spacing
is given by

Ly = Lom (27)

From our results, one can see that this latter postulate does not apply for the Johnson—Cook model (Figs.
3c and 5b). For the case of HY-100 steel, according to the definition (27), the shear band spacing will be
essentially zero for the Johnson—-Cook model whereas the definition (26) gives the value of 1.01 mm. For
this material and for a nominal strain rate ° = 10* s~!, the shear band spacing obtained by the MTS model
with the Wright and Ockendon (1996) and Molinari (1997) definitions are respectively equal to 0.97 and
0.96 mm. Using the power law, these values are respectively equal to 0.73 and 0.72 mm. These results show
that both definitions give essentially the same L values for each of the two models, MTS and power law.
We note that these results for HY-100 steel are in good agreement with Molinari’s results obtained for the
case of XC18 steel using the power law model. However, Chen and Batra’s (1999) work indicates that these
two definitions lead to quite different values of the shear band spacing when the material is modeled by an
affine function for the temperature rise.

According to the above remarks, Eq. (26) is more adequate and it is used in the following to determine
the adiabatic shear band spacing. The results obtained by the three models for Ls using this equation (0.73
mm for the power law, 0.97 mm for the MTS and 1.01 mm for the Johnson—-Cook) are slightly different and
they are in an acceptable order in comparison with the results presented in the literature, particularly those
of Nesterenko et al. (1995) where they observed approximately 32 shear bands regularly separated by 1 mm
in the case of an austenitic stainless steel. This experimental result corresponds to a rather developed stage
of self-organization of processes of shear bands. In another paper of Nesterenko et al. (1998), a different
experimental set up was used to allow the investigation of the initial stage of nucleation and self-organi-
zation of nuclei of shear bands. In this work, Nesterenko et al. (1998) reported a much lower shear band
spacing, 0.12 mm, for the 304L stainless steel corresponding to 235 shear band nuclei. Stainless-steel data
and details on the experimental and theoretical work on the collective behavior of shear bands may be
found in the work of Nesterenko (2001). We note that a similar relation to (26) was suggested by Bai (1982)
defining the characteristic length as ﬁ which leads to a smaller value of the shear band spacing than the
one we suggest using Eq. (26). o

5.1.2. Case of Ti-6AI-4V alloy

For the Ti-6A1-4V alloy modeled by two different constitutive relations (MTS, Johnson—-Cook), Fig. 3a
and b shows the dominant growth rate, 1, vs. the wave number, &, for various values of the average strain
7°. These curves have been computed for a nominal strain rate 7° = 10* s™! and an initial temperature
T; = 300 K. As in the case of the HY-100 steel, the dominant growth rate, 5, (Fig. 4a and b) increases for
small values of the wave number until it reaches a maximum then decreases for large value of £. We notice
that the Johnson—Cook model need to introduce, for a given nominal strain rate, the perturbation latter
than with the MTS model. Fig. 5a and b shows the dependence of the critical growth rate 5, and its
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corresponding wavelength L. = 2n/&. on the average strain 7° for Ti-6Al-4V alloy. In the case of the
Johnson-Cook model (Fig. 5b), the critical growth rate 7, exhibits a maximum for 79 = 10, but the critical
wavelength L. has no minimum value as for the HY-100 steel. However for the Ti-6Al-4V alloy, the curves
(Fig. 5a) n, vs. 7° and L. vs. 7° exhibit respectively a maximum, 7! = 0.56, and a minimum, 79 = 0.57. This
observation supports the choice of Eq. (26) as definition of critical growth rate 7.

To show the capability of the MTS model to predict the shear band spacing, we now compare our
theoretical predictions, for the Ti-6Al1-4V alloy, to experimental results available in the literature (Xue
et al., 2002). Here we consider three constitutive models, MTS, Johnson—-Cook and Xue et al. (2002), and
we use the Wright-Ockendon definition (Eq. (26)) to calculate the shear bands spacing, L. In our calcu-
lation, we adopted the experimental loading conditions. The nominal shear strain rate is taken to be 6 x 10*
s~! and the initial temperature is equal to 300 K. It should be noted that theoretical results of Xue et al.
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Table 6
Comparison of theoretical and experimental results for adiabatic shear band spacing for Ti-6Al-4V alloy
Experimental value Theoretical value ob- Theoretical value obtained Theoretical value ob-
tained by Xue et al. with Johnson-Cook law tained with MTS
(2002) model
Ly (mm) 0.53 0.1 0.02 0.52

(2002) were obtained using a power law-based constitutive relation characterized by a linear thermal
softening

T =op(y +7)"7" (1 —aTl) (28)

where oy and a are constants.

Our theoretical predictions for the shear band spacing obtained by the MTS and the Johnson-Cook
models are compared with the theoretical and experimental results of Xue et al. (2002) in Table 6. We note
that the power law with linear softening (Eq. (28)) and the Johnson—-Cook models lead to results far away
from the experimental result in the case of the Ti-6Al-4V alloy (see Table 6). Indeed the experimental value
is five times the theoretical value obtained using the power law with linear softening and 20 times the value
obtained with the Johnson—Cook model. On the other hand, the theoretical value obtained by the MTS
model is very close to the experimental one. Consequently, we can conclude that on one hand the shear
band spacing depends on the constitutive relation, and on the other hand the MTS model gives a much
better results in comparison to the two phenomenological laws in the case of the Ti-6Al-4V alloy.

5.2. Influence of the strain rate (loading rate)

Fig. 6 represents the dependence of the shear band spacing on the nominal shear strain rate, 7, in the
case of HY-100 steel for the power law (Eq. (19)), the Johnson—Cook and the MTS models. For each one of
these models, the shear band spacing rapidly decreases with an increase of the nominal strain rate until
about ° = 2 x 10* s7!, beyond which results show a tendency for the shear band spacing to saturate. We
also note that the difference between the theoretical predictions obtained by the three models is more
important for low nominal shear strain. For instance, at }° = 103 s~! the shear bands spacing is equal to
4.7389, 4.0513 and 5.7074 mm, for the MTS, the power law and of the Johnson—-Cook models respectively.
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Fig. 6. Influence of the nominal strain rate on the shear band spacing, L,, for the HY-100 steel.
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Fig. 7. Influence of the nominal strain rate on the shear band spacing, L, for the Ti-6Al-4V alloy.

On the other hand at 7° = 10 s~! L, is equal to 0.20516, 0.13483 and 0.17952 mm, for the MTS, the power
law and the Johnson—Cook models respectively.

In the case of Ti-6A1-4V alloy, Fig. 7 illustrates the influence of the nominal shear strain rate on the
shear band spacing. We note that the material parameters for the power law are not available in the lite-
rature. Therefore, the calculations are limited here to the case of the Johnson—-Cook and the MTS models
only. The results obtained by the MTS model are in agreement with the limited experimental result
available in the literature (Xue et al., 2002). Due to the choice of the L; definition and to the formulation of
the MTS model, we are unable to provide an analytical relation between the shear band spacing and the
strain rate to describe Fig. 7.

5.3. Influence of thermal conductivity

To investigate the influence of the thermal conductivity on the shear band spacing, we considered a
nominal shear strain rate j, = 10* s~! and an initial temperature 7; = 300 K. In Fig. 8, we show the vari-
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Fig. 8. Influence of the thermal conductivity on the shear band spacing, L.
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ation of the shear band spacing L; in terms of the thermal conductivity & for the power law, the MTS and
the Johnson—Cook models. The effect of conductivity is shown to be significant for the three models. In this
part, several values of conductivity were considered, the other parameters remaining constant and corre-
spond to those of HY-100 steel. The shear band spacing L, increases monotonically with an increase in k.
This is in accord with the known stabilizing effect of the thermal conductivity. However, the shear band
spacing obtained by the MTS model is larger than that obtained by the power law and the gap between the
two predictions increases with thermal conductivity coefficient. The shear band spacing obtained by the
power law is the smallest and that obtained by the Johnson—Cook model is the largest for all values of %.

6. Conclusions

We proposed the use of the MTS model along with the use of the perturbation method for the analysis of
shear band spacing in the case of HY-100 steel and Ti-6Al1-4V alloy. The MTS model describes the evo-
lution of the flow stress based on dislocation concepts. This model provides a better description of the flow
behavior for a large range of strain rates including low and high strain rates. The use of this model requires
a numerical solution of the heat equation (2) and the evolution equation of the internal variable 7.
However, in existing works on the analysis of shear band spacing, the used models for the flow stress such
as the power law lead to an analytical solution for the heat equation. In order to compare to existing
analyses, we used the power law and the Johnson—Cook models. Results from the MTS model have the
same trends as the power law as well as other used models in the literature. However, the predicted result
for adiabatic shear band spacing by the MTS model seems to be in a better agreement with the experimental
results than the results of the simple power law and Johnson—-Cook models. We have therefore shown that
the MTS model predicts well the value of the shear band spacing, and the influence of strain rate and
thermal conductivity on this value. Strain rate has a destabilizing effect whereas thermal conductivity has a
stabilizing effect.
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