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Abstract

We propose to use the physically-based mechanical threshold stress (MTS) model for the analysis of adiabatic shear

band spacing in HY-100 steel and Ti–6Al–4V alloy. Based on existing works, we use the perturbation method to

determine the instability modes and their corresponding spacing. To validate our results, we compare them to those

obtained using the phenomenological, and widely used, Johnson–Cook and power law models. We notice that the shear

band spacing depends on the constitutive relation employed. We also compared the results from our analytical analysis

to the available experimental ones. We show, for the first time, that the MTS model yields good results for adiabatic

shear band spacing, particularly for the case of Ti–6Al–4V alloy.
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1. Introduction

The localization of plastic deformation in narrow bands (shear bands) is a major damage mechanism

that occurs in ductile materials during high strain-rate deformation. They are observed in various appli-

cations such as metal forming, ballistic impact and high speed machining. Their formation signals a

transition from a generally homogeneous deformation to a non-homogeneous one involving high strain

gradients in a narrow region. In some circumstances many small bands may form throughout a volume of

material (Nesterenko et al., 1995), in which case a general weakening occurs with the possibility of multiple

failures and a general fragmentation. In other circumstances one band may dominate and material failure is

restricted to just that one location. In the experiments of Marchand and Duffy (1988), thin-walled tubes
were twisted at nominal strain rates in the range of 1200–1600 s�1. Only one shear band is observed in their
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specimen. However, during the radial collapse of thick-walled cylinder deformed at a strain rate of 104 s�1,

Nesterenko et al. (1995) observed 20 shear bands spaced about 0.85 and 1 mm in titanium and austenitic

stainless steel, respectively.

Few numerical studies of the shear band spacing are available in the literature. Grady and Kipp (1987)
have obtained the shear band spacing by accounting for momentum diffusion due to unloading within

bands. Wright and Ockendon (1996) used a perturbation analysis to characterize a dominant mode, which

corresponds to the most probable minimum spacing of shear bands. The analysis of Wright and Ockendon

(1996) is restricted to the perfectly plastic materials. Linear perturbation analysis, which has been used in

fluid mechanics, is first introduced in the context of adiabatic shear banding by Clifton (1978) and used

later by Bai (1982), Molinari (1985), Shawki and Clifton (1989) among others (e.g. see Bai and Dodd,

1992). Wright and Ockendon (1996) postulated that, in an infinite body, perturbations growing at different

sites will never merge and result in multiple shear bands. Thus, the wavelength of the dominant instability
mode with the maximum growth rate will determine the shear band spacing. Molinari (1997) has extended

Wright and Ockendon (1996) work to strain-hardening materials and has estimated the error in the shear

band spacing due to the finite thickness of the block deformed in simple shear. Recently, Batra and Chen

(2001) showed that four viscoplastic relations (Wright–Batra, Johnson–Cook, power law, and Bodner–

Partom relation) gave quite different values for the shear band spacing and the bandwidth.

In this paper we adopted the multi-term mechanical threshold stress (MTS) model, which includes the

superposition of different thermal activation barriers for dislocation motion, for adiabatic shear band

spacing analysis. In this model, evaluation of work hardening associated with dislocation accumulation and
recovery is principally based on the Voce law. To the best of our knowledge the MTS model has not been

used in the literature for shear band spacing analysis. The MTS model is based on the dislocation concepts

(Follansbee and Kocks, 1988) and was originally developed by Mecking and Kocks (1981). This model

provides a better understanding of the plastic behavior under a wide range of strain rate. The system of

governing equations for one-dimensional simple shearing deformation is formulated. For a given value of

the strain, a perturbation of the fundamental solution is considered and the instability modes are deter-

mined. We used the postulate of Wright and Ockendon (1996) to determine the shear band spacing. To

study the influence of the constitutive model on the results of the adiabatic shear band spacing, we compare
the results from the Johnson and Cook (1983) and power law models to the results of the MTS model. We

note that the shear band analysis using Johnson–Cook and power law are available in the literature (Batra

and Chen, 2001; Molinari and Clifton, 1983; Klopp et al., 1985; Lee and Lin, 1998). The considered

materials in this study are HY-100 steel and Ti–6Al–4V alloy. The capability of the MTS model to predict

the shear band spacing is proven by comparison of our results to the experimental ones (Xue et al., 2002).
2. Governing equations

We consider the simple shear problem which models the torsional loading of a thin-walled tube. We use

a plate with a finite thickness 2h in the y direction whereas it is infinite in the shear direction x and in the

out-of-plane direction z (see Fig. 1). We assume that the displacement is equal to zero in the y direction and
y
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Fig. 1. Geometry used for shear analysis.



L. Daridon et al. / International Journal of Solids and Structures 41 (2004) 3109–3124 3111
that all quantities are uniform along the x and z directions. Thus, the deformation field depends only on the

space coordinate y. At the upper and lower surfaces, we apply a constant velocity parallel to the x direction.
The material is taken incompressible and its mass density is given by q. At large strain and high strain rate,

the elastic effects can be ignored and adiabatic conditions can be assumed at the boundaries. Therefore, the
governing equations are given by

• The momentum balance equation
q
o

qc

_c ¼

s ¼

d/
dc

vð

oT
oy
v
ot

¼ os
oy

ð1Þ
where v is the component of the velocity along the x direction (others component are equal to zero), t is
time and s is the shear stress.

• The energy equation
oT
ot

� k
o2T
oy2

¼ bs _c ð2Þ
where T and _c are respectively the temperature and the shear strain rate. c is the heat capacity, k is the

heat conductivity and b is the Taylor–Quinney coefficient which describes the fraction of plastic work
converted into heat.

• The compatibility equation
ov
oy

ð3Þ
In order to complete the problem description we need to introduce a material constitutive relation

expressed by the following general form:
sðc; _c; T ;/Þ ð4Þ
where / is an internal variable whose evolution is given by
¼ f ð/; s; _c; T Þ ð5Þ
The form of the function f will vary with the specific constitutive relation.
The initial conditions are given by
vðy; 0Þ ¼ 0; T ðy; 0Þ ¼ Ti; sðy; 0Þ ¼ 0; /ðy; 0Þ ¼ 0 ð6Þ
where Ti is the initial temperature.

The boundary conditions considered here are:

• A constant velocity V parallel to the shear direction is applied at the boundaries
�h; tÞ ¼ �V ; vðh; tÞ ¼ þV for tP 0 ð7Þ
• As high strain rates are considered in this study, adiabatic conditions are assumed at the boundaries:
ð�h; tÞ ¼ 0 and
oT
oy

ðþh; tÞ ¼ 0 for tP 0 ð8Þ
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3. Viscoplastic constitutive relations

It is well documented that the existence of a maximum on the stress–strain curve is a necessary condition

for the occurrence of adiabatic shear band. This maximum is due to the competition between the stabilizing
effect of the hardening and the strain rate and the destabilizing effect of the thermal softening. Therefore, we

must use a viscoplastic relation which takes these three effects into account. In this study we will use the

MTS model for the shear band spacing analysis. To highlight the efficiency of this model we also used two

other constitutive relations Johnson–Cook (Johnson and Cook, 1983) and power law (Batra and Chen,

2001; Molinari and Clifton, 1983; Klopp et al., 1985) models and compared results from these models to the

available experimental results.

3.1. The mechanical threshold stress model

The MTS model have initially been proposed by Kocks (1976), and then developed by Mecking and

Kocks (1981), Estrin and Mecking (1984) and Follansbee and Kocks (1988). According to this model, the

mechanical behavior of a material is only linked to the evolution of its microstructure. Thus, the kinetics of

the plastic flow during loading is controlled by a unique structural parameter, S, which takes dislocation

motion into account through an internal state variable, called MTS and denoted ŝ. This variable is defined
as the flow stress at 0 K. We also note that the relation between the flow shear stress, denoted s, and the

MTS depends on the material considered. In the following, we present the MTS model in the case of the
HY-100 steel and Ti–6Al–4V alloy.

3.1.1. HY-100 steel

For the HY-100 steel, the MTS is given by the following equation (Goto et al., 2000):
ŝ ¼ ŝa þ ŝi þ ŝe ð9Þ

where ŝa � sa characterizes the rate-independent interactions of dislocations with long-range barriers, e.g.
grain boundaries, ŝi characterizes the rate-dependent interactions of dislocations with short-range barriers

due to solute and interstitial atoms and ŝe characterizes the rate-dependent interactions of dislocations with
long-range barriers consisting of other dislocations and carbide particles. We note that ŝe increases during
deformation by increasing dislocation density, which depends on temperature and strain rate because

dynamic recovery takes place.

At different temperatures T and shear strain rates _c, the contributions to the flow shear stress sj are
related to their reference counterparts ŝj through the scaling functions Sjð _c; T Þ so that sj ¼ Sjð _c; T Þŝj, where
j ¼ i or e. Hence, the flow shear stress s is described as follows:
s ¼ sa þ Sið _c; T Þŝi�lþ Seð _c; T Þŝe�l ð10Þ

where �l is the normalized shear modulus for which the dependence on temperature is given by the following

empirical relation (Varshni, 1970; Chen and Gray, 1996; Oussouaddi et al., 2003):
�l ¼ l
l0

¼ 1� D

l0 exp
T0
T � 1
� � ð11Þ
Here T0 and D are empirical constants, l is the shear modulus at T and l0 is the shear modulus at 0 K.

The scaling factor, Sjð _c; T Þ, is derived from an Arrhenius expression relating strain rate to activation
energy and temperature
_c ¼ _c0j exp

�
� DGj

kT

�
; where DGj ¼ g0jlb3 1

 
� sj

ŝj

 !pj!qj

ð12Þ



Table 1

MTS parameters for HY-100 steel (Bai and Dodd, 1992)

Parameter Value

sa [MPa] 23.55

ŝi [MPa] 779.65

l0 [GPa] 71.46

D [MPa] 2910

T0 [K] 204

k [J/K] 1.38E)23
b [m] 2.48E)10
_c0i [s

�1] 1E+13

g0i 1.161

qi 1.5

pi 0.5

_c0e [s
�1] 1E+7

g0e 1.6

qe 1

pe 2/3

g0es 0.112

_c0es [s
�1] 1E+7
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where _c0j is a reference shear strain rate, k is the Boltzmann constant, g0j is a normalized activation energy,

b is the Burgers vector and pj and qj are statistical constants that characterize the shape of the obstacle

profile (06 pj 6 1, 16 qj 6 2, Mecking and Kocks, 1981). The scaling factor Sjð _c; T Þ can be derived from

Eq. (12)
Sjð _c; T Þ ¼ 1

8<
: � kT

g0jlb3
ln

_c0j
_c

 !" #1=qj9=
;

1=pj

ð13Þ
Plastic strain is implicitly represented through the term representing structure evolution ŝe. The specific

form for the expression of the plastic strain, c, is dependent on the strain-hardening rate description. Voce

law gives the strain-hardening response within the MTS model
h ¼ dŝe
dc

¼ h0 1

0
@ �

tanh 2 ŝe
ŝes

� �
tanhð2Þ

1
A ð14Þ
where ŝes is a temperature-and-rate-sensitive saturation shear stress, and h0 is an experimentally determined

stage II strain-hardening rate. The dependence of h0 on temperature is determined by Goto et al. (2000),

h0 ¼ 5102:4� 2:0758� T [MPa]. The saturation stress ŝes is derived from the saturation threshold stress ŝes0
by
ln
_ces0
_c

 !
¼ � g0eslb3

kT
ln

ŝes
ŝes0

 !
ð15Þ
where g0es is normalized activation energy for dislocation–dislocation interactions.

The values of the material constants of the above-described model are listed in Table 1.

3.1.2. Ti–6Al–4V alloy

In the case of the Ti–6Al–4V alloy the flow stress is expressed by the following equation (Da Silva and
Ramesh, 1997; Follansbee and Gray, 1989):



Table 2

MTS parameters for Ti–6Al–4V alloy (Molinari and Clifton, 1983)

Parameter Value

sa [MPa] 58

ŝi [MPa] 872

g0i 0.264

qi 2

pi 1

_c0i [s
�1] 1E+10

g0s 0.8

ŝs [MPa] 486.6

_c0s [s
�1] 1E+10

l [GPa] 49.02

qs 2

ps 1

g0e 1.6

_c0e [s
�1] 1E+7

qe 1

pe 2/3

ŝes [MPa] 310.62

b [m] 2.55E)10
h0 [MPa] 2721

Table 3

Physical parameters for HY-100 steel and Ti–6Al–4V alloy

q [kg/m3] c [J/kgK] k [W/mK] b

HY-100 7860 473 49.73 0.9

Ti–6Al–4V 4430 564 16 0.9
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s ¼ sa þ Sið _c; T Þŝi þ Ssð _c; T Þŝs þ Seð _c; T Þŝe ð16Þ
where sa is an athermal component and ŝi, ŝs and ŝe are respectively threshold stress due to interactions of

dislocations due to interstitial atoms, to solute and to others dislocations. The specific form for the plastic

strain, c, depends on the hardening rate h ¼ dŝe=dc given by the following empirical equation (Da Silva and
Ramesh, 1997; Follansbee and Gray, 1989):
h ¼ dŝe
dc

¼ h0 1

 
� ŝe
ŝes

!
ð17Þ
where ŝes is the value of the saturation threshold stress, and h0 is the hardening rate corresponding to the

stage II and is experimentally determined (Da Silva and Ramesh, 1997). The values of the material con-

stants of the above-described model for the Ti–6Al–4V alloy are listed in Table 2.

The physical parameters for both materials are given in Table 3.
3.2. Johnson–Cook model

Johnson and Cook (1983) proposed a phenomenological model for metals subjected to large strains, high

strain rates and high temperatures. The Johnson–Cook model has enjoyed much success because of its
simplicity and the availability of parameters of various materials of interest. The flow shear stress is given by



Table 4

Johnson–Cook parameters for HY-100 steel and Ti–6Al–4V alloy (Clifton, 1978; Klopp et al., 1985)

k1 [MPa] k2 [MPa] k3 k4 k5 _c0 [s�1] T0 [K]

HY-100 182.25 580.36 0.107 0.0227 0.7 3300 300

Ti–6Al–4V 418.4 394.4 0.47 0.035 1.0 1E)5 300

Table 5

Power law parameters for HY-100 steel (Clifton, 1978)

s0 [MPa] c0 _c0 [s�1] T0 [K] nk5 m m

HY-100 405 0.012 3300 300 0.107 0.0117 0.75
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sðc; _c; T Þ ¼ ðk1 þ k2c
k3Þ 1

 
þ k4 ln

_c
_c0

 !!
1

 
� T � T0

Tm � T0

� �k5
!

ð18Þ
where c is the plastic shear strain, _c0 is a reference shear strain rate. T0 and Tm are respectively the initial or

the reference temperature and the melting temperature. The coefficients k1, k2, k2, k4 and k5 are constitutive
parameters. In the right hand side of Eq. (18), the first term gives the stress as a function of strain-hardening

coefficient k2 and strain-hardening exponent k3, the second term represents instantaneous strain-rate sen-

sitivity and the last term represents the temperature dependence of the flow stress. Here, k4 is the strain-rate
parameter and k5 is the thermal-softening parameter.

For this model there is no internal variable. Therefore Eq. (5) reduces to / ¼ f ¼ 0. The Johnson–Cook

model parameters for the HY-100 steel and Ti–6Al–4V alloy are given in Table 4.
3.3. Power law

In order to analyze the influence of each material parameter on the shear band spacing it is useful to use

a constitutive relation with a simple form and decoupled terms for defining the strain hardening, strain-rate

hardening and thermal softening behaviors of the material. Therefore, we used in this study the power law

as reference behavior. Different authors (Molinari, 1985; Batra and Chen, 2001; Molinari and Clifton, 1983;
Klopp et al., 1985) have described the stress–strain curves for dynamic loading by
sðc; _c; T Þ ¼ s0
c
c0

� �n _c
_c0

 !m
T
T0

� �m

ð19Þ
where s0 is the yield stress of the material in a quasi-static simple shear test, n and m characterize the strain

and strain-rate hardening of the material and m < 0 characterizes its thermal softening. c0 is the strain at yield

in a quasi-static simple shear test at _c ¼ 10�4 s�1 and _c0 is a reference shear rate. T0 is a reference temperature

and T is the current temperature. For the HY-100 steel the parameters data are given in Table 5.
4. Perturbation analysis

Linear perturbation methods were first introduced in the context of adiabatic shear banding by Clifton
(1978). Here, we closely follow the work of Molinari (1997) in studying the stability of the homogeneous

solution of the governing equations (1)–(5).
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We consider the homogeneous solutions sð0ÞðtÞ, vð0ÞðtÞ, cð0ÞðtÞ, T ð0ÞðtÞ for shear stress, velocity, shear strain
and temperature respectively. Now we consider an infinitesimal perturbation of the homogeneous solution

at time t ¼ t0 expressed by
dsðy; t; t0Þ ¼ dsð0Þegðt�t0Þeiny ; tP t0 ð20Þ
where dsð0Þ ¼ ðdvð0Þ; dcð0Þ; dsð0Þ; dT ð0ÞÞ and y represents the position along the thickness of the plate. The

quantities dvð0Þ, dcð0Þ, dsð0Þ and dT ð0Þ characterize the amplitude at time t0 of the perturbation. The parameter

n is the wave number of the perturbation and g is the inverse of the characteristic time, called growth rate of

the perturbation. The fundamental solution is stable when the real part of g is negative, ReðgÞ < 0, and

unstable when ReðgÞ > 0.

The perturbed solution is defined by the following equation:
sðy; t; t0Þ ¼ sð0Þðy; tÞ þ dsðy; t; t0Þ ð21Þ
Here, s ¼ ðv; c; s; T Þ. By substituting the solution (Eq. (21)) into the governing equations (1)–(5) and lin-

earizing provide, at time t0, a linear set of equations for the amplitude ds0
Aðt0; g; nÞ � ds0 ¼ 0 ð22Þ
This set of equation admits a non-trivial solution only if the determinant of the matrix A is equal to zero.

This leads to a cubic equation for the growth rate g of the perturbation
q2cg3 þ q cn2
os
o _c

����
s0

�
þ kn2 � b _c0

os
oT

����
s0

�
g2 þ kn2

os
o _c

����
s0

�
þ qc f 0 os

o/

����
s0

�
þ os
oc

����
s0

�
þ bs0

os
oT

����
s0

�
n2g

þ k f 0 os
o/

����
s0

�
þ os
oc

����
s0

�
n4 ¼ 0 ð23Þ
In Eq. (23), partial derivatives are evaluated for the fundamental solution at time t0. For given values of

c0 ¼ c0ðt0Þ and n, three complex roots are obtained, giðn; c0Þ (i ¼ 1, 2, 3). The root with the largest positive

real part governs the instability of the homogeneous solution, and is hereafter referred to as the dominant

instability mode, denoted gD.
The fundamental solution is such that the strain rate is uniform, _c0 ¼ V

h. We note that in the case of
power law, the heat equation (2) can be resolved analytically, with adiabatic assumption and where the

constitutive law (13) is used to express the stress s. In the case of the Johnson–Cook model the temperature

is obtained by numerical integration of the heat equation (2) where the constitutive law (7) is used to

express the stress s. In the case of the MTS model the temperature is obtained by numerical integration of

the heat equation (2) and the evolution equation of the internal variable (5). Then Eq. (4) is used to obtain

the stress s.
5. Results and discussions

First, we study the influence of the constitutive relations (MTS, Johnson–Cook, power law) on the shear

band spacing in the case of HY-100 steel and Ti–6Al–4V alloy. Then we compare our theoretical predic-

tions with the experimental results of Xue et al. (2002) for Ti–6Al–4V alloy. At last, we also study the
influence of the nominal shear strain rate and of some material parameters on the shear band spacing.



L. Daridon et al. / International Journal of Solids and Structures 41 (2004) 3109–3124 3117
5.1. Influence of the constitutive relation on the shear band spacing

5.1.1. Case of HY-100 steel

For the HY-100 steel modeled by three different constitutive relations (MTS, Johnson–Cook, power
law), Fig. 2a–c shows the dominant growth rate, gD, vs. the wave number, n, for various values of the

average strain c0. These curves have been computed for a nominal strain rate _c0 ¼ 104 s�1 and an initial

temperature Ti ¼ 300 K. The dominant growth rate, gD, depends on the initial time t0 through the relation

c0 ¼ _c0t0. For each value of c0, the dominant growth rate increases for small values of the wave number

until it reaches a maximum then decreases for large value of n. The existence of this maximum is char-

acteristic of the dominant instability mode resulting from the competition of two stabilizing effects: inertia

restrains the growth of long-wavelength modes (small n) while heat conduction restrains the growth of

small-wavelength modes (large n). In what follows the maximum dominant growth rate at time t0 for the
perturbation is called the critical growth rate gc, and the corresponding wave number is defined as the

critical wave number nc. A parametric study shows that the minimum value of the average strain required to
0
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Fig. 2. (a) Dominant growth rate, gD, vs. the wave number, in the case of the HY-100 steel and for the MTS model (_c0 ¼ 104 s�1,

Ti ¼ 300 K). (b) Dominant growth rate, gD, vs. the wave number, in the case of the HY-100 steel and for the power law ( _c0 ¼ 104 s�1,

Ti ¼ 300 K). (c) Dominant growth rate, gD, vs. the wave number, in the case of the HY-100 steel and for the Johnson–Cook model

(_c0 ¼ 104 s�1, Ti ¼ 300 K).
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obtain dominant growth rate instability is 0.32 for the power law model, 0.30 for the Johnson–Cook model

and 0.448 for the MTS model, that is why we propose in Fig. 2 results for c0 > 0:5.
Fig. 3a–c shows the dependence of the critical growth rate gc and its corresponding wavelength

Lc ¼ 2p=nc on the average strain c0 for HY-100 steel. For both the power law and the MTS model, we
observe that the curves of the critical growth rate and the critical wavelength vs. average strain have

respectively a maximum gcm and a minimum Lcm. These values are obtained for two different values of the

average strain, c01, c
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gcm ¼ max
c0 P 0

gcðc0Þ ¼ gcðc01Þ ð24Þ
Lcm ¼ min
c0 P 0

Lcðc0Þ ¼ Lcðc02Þ ð25Þ
In the example considered here, since the values of c01 and c02 are very close for both the MTS and power law

(Fig. 3a and b), we assume c01 ffi c02, which are equal to 1.05 and 1.1 respectively, for the power law and MTS
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models. This assumption is in a good agreement with the results obtained by Molinari (1997) in the case of

XC18 steel with the power law model.

However, in the case of the Johnson–Cook model, the critical growth rate gc exhibits a maximum for

c01 ¼ 2:875, but the critical wavelength Lc has no minimum value.
It the case of non-hardening materials, Wright and Ockendon (1996) postulated that the dominant

instability mode with the maximum growth rate at time t0 determines the shear band spacing, Ls
Ls ¼
2p

ncðtgc0 Þ
ð26Þ
where tgc0 corresponds to the time at c01 . For strain-hardening materials, Molinari (1997) defined precisely

the concept of critical time and corresponding strain ðtgc0 ; c02Þ and postulated that the shear banding spacing

is given by
Ls ¼ Lcm ð27Þ
From our results, one can see that this latter postulate does not apply for the Johnson–Cook model (Figs.

3c and 5b). For the case of HY-100 steel, according to the definition (27), the shear band spacing will be

essentially zero for the Johnson–Cook model whereas the definition (26) gives the value of 1.01 mm. For

this material and for a nominal strain rate _c0 ¼ 104 s�1, the shear band spacing obtained by the MTS model

with the Wright and Ockendon (1996) and Molinari (1997) definitions are respectively equal to 0.97 and
0.96 mm. Using the power law, these values are respectively equal to 0.73 and 0.72 mm. These results show

that both definitions give essentially the same Ls values for each of the two models, MTS and power law.

We note that these results for HY-100 steel are in good agreement with Molinari�s results obtained for the

case of XC18 steel using the power law model. However, Chen and Batra�s (1999) work indicates that these

two definitions lead to quite different values of the shear band spacing when the material is modeled by an

affine function for the temperature rise.

According to the above remarks, Eq. (26) is more adequate and it is used in the following to determine

the adiabatic shear band spacing. The results obtained by the three models for Ls using this equation (0.73
mm for the power law, 0.97 mm for the MTS and 1.01 mm for the Johnson–Cook) are slightly different and

they are in an acceptable order in comparison with the results presented in the literature, particularly those

of Nesterenko et al. (1995) where they observed approximately 32 shear bands regularly separated by 1 mm

in the case of an austenitic stainless steel. This experimental result corresponds to a rather developed stage

of self-organization of processes of shear bands. In another paper of Nesterenko et al. (1998), a different

experimental set up was used to allow the investigation of the initial stage of nucleation and self-organi-

zation of nuclei of shear bands. In this work, Nesterenko et al. (1998) reported a much lower shear band

spacing, 0.12 mm, for the 304L stainless steel corresponding to 235 shear band nuclei. Stainless-steel data
and details on the experimental and theoretical work on the collective behavior of shear bands may be

found in the work of Nesterenko (2001). We note that a similar relation to (26) was suggested by Bai (1982)

defining the characteristic length as 1
nðtgc

0
Þ which leads to a smaller value of the shear band spacing than the

one we suggest using Eq. (26).

5.1.2. Case of Ti–6Al–4V alloy

For the Ti–6Al–4V alloy modeled by two different constitutive relations (MTS, Johnson–Cook), Fig. 3a

and b shows the dominant growth rate, gD, vs. the wave number, n, for various values of the average strain
c0. These curves have been computed for a nominal strain rate _c0 ¼ 104 s�1 and an initial temperature

Ti ¼ 300 K. As in the case of the HY-100 steel, the dominant growth rate, gD, (Fig. 4a and b) increases for

small values of the wave number until it reaches a maximum then decreases for large value of n. We notice
that the Johnson–Cook model need to introduce, for a given nominal strain rate, the perturbation latter

than with the MTS model. Fig. 5a and b shows the dependence of the critical growth rate gc and its
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corresponding wavelength Lc ¼ 2p=nc on the average strain c0 for Ti–6Al–4V alloy. In the case of the
Johnson–Cook model (Fig. 5b), the critical growth rate gc exhibits a maximum for c01 ¼ 10, but the critical

wavelength Lc has no minimum value as for the HY-100 steel. However for the Ti–6Al–4V alloy, the curves

(Fig. 5a) gc vs. c
0 and Lc vs. c0 exhibit respectively a maximum, c01 ¼ 0:56, and a minimum, c02 ¼ 0:57. This

observation supports the choice of Eq. (26) as definition of critical growth rate gc.
To show the capability of the MTS model to predict the shear band spacing, we now compare our

theoretical predictions, for the Ti–6Al–4V alloy, to experimental results available in the literature (Xue

et al., 2002). Here we consider three constitutive models, MTS, Johnson–Cook and Xue et al. (2002), and

we use the Wright–Ockendon definition (Eq. (26)) to calculate the shear bands spacing, Ls. In our calcu-
lation, we adopted the experimental loading conditions. The nominal shear strain rate is taken to be 6 · 104
s�1 and the initial temperature is equal to 300 K. It should be noted that theoretical results of Xue et al.



Table 6

Comparison of theoretical and experimental results for adiabatic shear band spacing for Ti–6Al–4V alloy

Experimental value Theoretical value ob-

tained by Xue et al.

(2002)

Theoretical value obtained

with Johnson–Cook law

Theoretical value ob-

tained with MTS

model

Ls (mm) 0.53 0.1 0.02 0.52
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(2002) were obtained using a power law-based constitutive relation characterized by a linear thermal
softening
s ¼ a0ðcþ ciÞ
n _cmð1� aT Þ ð28Þ
where a0 and a are constants.

Our theoretical predictions for the shear band spacing obtained by the MTS and the Johnson–Cook

models are compared with the theoretical and experimental results of Xue et al. (2002) in Table 6. We note

that the power law with linear softening (Eq. (28)) and the Johnson–Cook models lead to results far away

from the experimental result in the case of the Ti–6Al–4V alloy (see Table 6). Indeed the experimental value
is five times the theoretical value obtained using the power law with linear softening and 20 times the value

obtained with the Johnson–Cook model. On the other hand, the theoretical value obtained by the MTS

model is very close to the experimental one. Consequently, we can conclude that on one hand the shear

band spacing depends on the constitutive relation, and on the other hand the MTS model gives a much

better results in comparison to the two phenomenological laws in the case of the Ti–6Al–4V alloy.

5.2. Influence of the strain rate (loading rate)

Fig. 6 represents the dependence of the shear band spacing on the nominal shear strain rate, _c0, in the

case of HY-100 steel for the power law (Eq. (19)), the Johnson–Cook and the MTS models. For each one of

these models, the shear band spacing rapidly decreases with an increase of the nominal strain rate until

about _c0 ¼ 2� 104 s�1, beyond which results show a tendency for the shear band spacing to saturate. We
also note that the difference between the theoretical predictions obtained by the three models is more

important for low nominal shear strain. For instance, at _c0 ¼ 103 s�1 the shear bands spacing is equal to

4.7389, 4.0513 and 5.7074 mm, for the MTS, the power law and of the Johnson–Cook models respectively.
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On the other hand at _c0 ¼ 105 s�1 Ls is equal to 0.20516, 0.13483 and 0.17952 mm, for the MTS, the power
law and the Johnson–Cook models respectively.

In the case of Ti–6Al–4V alloy, Fig. 7 illustrates the influence of the nominal shear strain rate on the

shear band spacing. We note that the material parameters for the power law are not available in the lite-

rature. Therefore, the calculations are limited here to the case of the Johnson–Cook and the MTS models

only. The results obtained by the MTS model are in agreement with the limited experimental result

available in the literature (Xue et al., 2002). Due to the choice of the Ls definition and to the formulation of

the MTS model, we are unable to provide an analytical relation between the shear band spacing and the

strain rate to describe Fig. 7.
5.3. Influence of thermal conductivity

To investigate the influence of the thermal conductivity on the shear band spacing, we considered a
nominal shear strain rate _c0 ¼ 104 s�1 and an initial temperature Ti ¼ 300 K. In Fig. 8, we show the vari-
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ation of the shear band spacing Ls in terms of the thermal conductivity k for the power law, the MTS and

the Johnson–Cook models. The effect of conductivity is shown to be significant for the three models. In this

part, several values of conductivity were considered, the other parameters remaining constant and corre-

spond to those of HY-100 steel. The shear band spacing Ls increases monotonically with an increase in k.
This is in accord with the known stabilizing effect of the thermal conductivity. However, the shear band

spacing obtained by the MTS model is larger than that obtained by the power law and the gap between the

two predictions increases with thermal conductivity coefficient. The shear band spacing obtained by the

power law is the smallest and that obtained by the Johnson–Cook model is the largest for all values of k.
6. Conclusions

We proposed the use of the MTS model along with the use of the perturbation method for the analysis of

shear band spacing in the case of HY-100 steel and Ti–6Al–4V alloy. The MTS model describes the evo-
lution of the flow stress based on dislocation concepts. This model provides a better description of the flow

behavior for a large range of strain rates including low and high strain rates. The use of this model requires

a numerical solution of the heat equation (2) and the evolution equation of the internal variable ŝe.
However, in existing works on the analysis of shear band spacing, the used models for the flow stress such

as the power law lead to an analytical solution for the heat equation. In order to compare to existing

analyses, we used the power law and the Johnson–Cook models. Results from the MTS model have the

same trends as the power law as well as other used models in the literature. However, the predicted result

for adiabatic shear band spacing by the MTS model seems to be in a better agreement with the experimental
results than the results of the simple power law and Johnson–Cook models. We have therefore shown that

the MTS model predicts well the value of the shear band spacing, and the influence of strain rate and

thermal conductivity on this value. Strain rate has a destabilizing effect whereas thermal conductivity has a

stabilizing effect.
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